80 research outputs found

    Fuzzy Modeling and Parallel Distributed Compensation for Aircraft Flight Control from Simulated Flight Data

    Get PDF
    A method is described that combines fuzzy system identification techniques with Parallel Distributed Compensation (PDC) to develop nonlinear control methods for aircraft using minimal a priori knowledge, as part of NASAs Learn-to-Fly initiative. A fuzzy model was generated with simulated flight data, and consisted of a weighted average of multiple linear time invariant state-space cells having parameters estimated using the equation-error approach and a least-squares estimator. A compensator was designed for each subsystem using Linear Matrix Inequalities (LMI) to guarantee closed-loop stability and performance requirements. This approach is demonstrated using simulated flight data to automatically develop a fuzzy model and design control laws for a simplified longitudinal approximation of the F-16 nonlinear flight dynamics simulation. Results include a comparison of flight data with the estimated fuzzy models and simulations that illustrate the feasibility and utility of the combined fuzzy modeling and control approach

    Global Aerodynamic Modeling Using Automated Local Model Networks in Real Time

    Get PDF
    A novel method is presented for automated real-time global aerodynamic modeling using local model networks, known as Smoothed Partitioning with Localized Trees in Real Time (SPLITR), as part of NASAs Learn-to-Fly technology development initiative. The global nonlinear aerodynamics are partitioned into several local regions known as cells, with the dimension, location, and timing of each partition automatically selected based on a residual characterization procedure, under the constraints of real-time operation. Regression trees represent the successive partitioning of the global flight envelope and describe the evolution of the cell structure. Recursive equation-error least-squares parameter estimation in the time domain is used to estimate a model that represents the local aerodynamics in each region, so that it can be updated independently with non-contiguous data in the range of each cell over time. A weighted superposition of these piecewise local models across the flight envelope forms a global nonlinear model that also accurately captures the local aerodynamics. The SPLITR approach is demonstrated using both simulation and flight data, and the results are analyzed in terms of model predictive capabilities as well as interpretability. The results show that SPLITR can be used to automatically partition complex nonlinear aerodynamic behavior, produce an accurate model, and provide valuable physical insight into the local and global aerodynamics

    Non-linear controls influence functions in an aircraft dynamics simulator

    Get PDF
    In the development and testing of novel structural and controls concepts, such as morphing aircraft wings, appropriate models are needed for proper system characterization. In most instances, available system models do not provide the required additional degrees of freedom for morphing structures but may be modified to some extent to achieve a compatible system. The objective of this study is to apply wind tunnel data collected for an Unmanned Air Vehicle (UAV), that implements trailing edge morphing, to create a non-linear dynamics simulator, using well defined rigid body equations of motion, where the aircraft stability derivatives change with control deflection. An analysis of this wind tunnel data, using data extraction algorithms, was performed to determine the reference aerodynamic force and moment coefficients for the aircraft. Further, non-linear influence functions were obtained for each of the aircraft s control surfaces, including the sixteen trailing edge flap segments. These non-linear controls influence functions are applied to the aircraft dynamics to produce deflection-dependent aircraft stability derivatives in a non-linear dynamics simulator. Time domain analysis of the aircraft motion, trajectory, and state histories can be performed using these nonlinear dynamics and may be visualized using a 3-dimensional aircraft model. Linear system models can be extracted to facilitate frequency domain analysis of the system and for control law development. The results of this study are useful in similar projects where trailing edge morphing is employed and will be instrumental in the University of Maryland s continuing study of active wing load control

    Flight Testing of Novel Compliant Spines for Passive Wing Morphing on Ornithopters

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are proliferating in both the civil and military markets. Flapping wing UAVs, or ornithopters, have the potential to combine the agility and maneuverability of rotary wing aircraft with excellent performance in low Reynolds number flight regimes. The purpose of this paper is to present new free flight experimental results for an ornithopter equipped with one degree of freedom (1DOF) compliant spines that were designed and optimized in terms of mass, maximum von-Mises stress, and desired wing bending deflections. The spines were inserted in an experimental ornithopter wing spar in order to achieve a set of desired kinematics during the up and down strokes of a flapping cycle. The ornithopter was flown at Wright Patterson Air Force Base in the Air Force Research Laboratory Small Unmanned Air Systems (SUAS) indoor flight facility. Vicon motion tracking cameras were used to track the motion of the vehicle for five different wing configurations. The effect of the presence of the compliant spine on wing kinematics and leading edge spar deflection during flight is presented. Results show that the ornithopter with the compliant spine inserted in its wing reduced the body acceleration during the upstroke which translates into overall lift gains

    Investigation of the Thomson scattering-ECE discrepancy in ICRF heated plasmas at Alcator C-Mod

    Get PDF
    This paper reports on new experiments at Alcator C-Mod that were performed in order to investigate the long-standing, unresolved discrepancy between Thomson scattering (TS) and electron cyclotron emission (ECE) measurements of electron temperature in high temperature tokamak plasmas. Ion cyclotron range of frequency (ICRF) heating is used to produce high temperature conditions where the type of TS-ECE discrepancy observed in the past at JET and TFTR should become observable. At Alcator C-Mod, plasmas with Te(0) up to 8 keV are obtained using ion cyclotron resonance heating (ICRH), ICRF mode conversion heating and a combination of the two heating methods in order to explore the hypothesis that the presence of ICRH-generated fast ions may be related to the discrepancy. In all high temperature cases, the TS and ECE measurements of electron temperature agree to within experimental uncertainties. We find no evidence for the type of discrepancy reported at JET and TFTR. These results show that the TS-ECE discrepancy does not depend on high temperatures alone and also that the presence of ICRH-generated fast ions is insufficient to cause the TS-ECE discrepancy.United States. Dept. of Energy (DE-FC02-99ER54512

    Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models

    Get PDF
    A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.United States. Department of Energy (Award DE-FC02-99ER54512)United States. Department of Energy (Grant DESC0014264

    Measurement of LHCD edge power deposition through modulation techniques on Alcator C-Mod

    Get PDF
    The efficiency of LHCD on Alcator C-Mod drops exponentially with line average density. At reactor relevant densities (> 1 · 1020 [m[-3 superscript]]) no measurable current is driven. While a number of causes have been suggested, no specific mechanism has been shown to be responsible for the loss of current drive at high density. Fast modulation of the LH power was used to isolate and quantify the LHCD deposition within the plasma. Measurements from these plasmas provide unique evidence for determining a root cause. Modulation of LH power in steady plasmas exhibited no correlated change in the core temperature. A correlated, prompt response in the edge suggests that the loss in efficiency is related to a edge absorption mechanism. This follows previous results which found the generation of n||-independent SOL currents. Multiple Langmuir probe array measurements of the conducted heat conclude that the lost power is deposited near the last closed flux surface. The heat flux induced by LH waves onto the outer divertor is calculated. Changes in the neutral pressure, ionization and hard X-ray emission at high density highlight the importance of the active divertor in the loss of efficiency. Results of this study implicate a mechanism which may occur over multiple passes, leading to power absorption near the LCFS

    Correlation ECE diagnostic in Alcator C-Mod

    Get PDF
    Correlation ECE (CECE) is a diagnostic technique that allows measurement of small amplitude electron temperature, T[subscript e], fluctuations through standard cross-correlation analysis methods. In Alcator C-Mod, a new CECE diagnostic has been installed[Sung RSI 2012], and interesting phenomena have been observed in various plasma conditions. We find that local T[subscript e] fluctuations near the edge (ρ ~ 0:8) decrease across the linearto- saturated ohmic confinement transition, with fluctuations decreasing with increasing plasma density[Sung NF 2013], which occurs simultaneously with rotation reversals[Rice NF 2011]. T[subscript e] fluctuations are also reduced across core rotation reversals with an increase of plasma density in RF heated L-mode plasmas, which implies that the same physics related to the reduction of T[subscript e] fluctuations may be applied to both ohmic and RF heated L-mode plasmas. In I-mode plasmas, we observe the reduction of core T[subscript e] fluctuations, which indicates changes of turbulence occur not only in the pedestal region but also in the core across the L/I transition[White NF 2014]. The present CECE diagnostic system in C-Mod and these experimental results are described in this paper

    Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experimenta)

    Get PDF
    For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and compare with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.United States. Department of Energy (Contract No. DE-FC02-99ER54512-CMOD)United States. Department of Energy. Office of Science (Contract No. DE-AC02- 05CH11231
    corecore